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GOAL  

 

The goal of the experiment is to acquaint students with analysis of sources of 

errors and evaluation of the uncertainties in the direct and indirect measurement of 

electrical quantities, using two methods. 

 

EQUIPMENT SPECIFICATION  

 

Instrumentation and software 

Instruments 

1. Digital Multimeter type APPA 109N 

2. Digital Multimeter type Metex M-3270D 

3. Digital Multimeter with scanning and data logger function RIGOL DM3051 oper-

ated by computer via USB  interface 

4. Analogue Multimeter type: PROTEK 3030S 

5. Power supply +/- 30V ; 5 A  (voltage and current controlled) 

Software: 

1. RIGOL data acquisition software. 

2. Microsoft Office Excel  

3. LabVIEW - Laboratory Virtual Instrument Engineering Workbench 
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THEORETICAL BASIS  

 

The objective of measurement is to assign one or more quantity values that can 

reasonably be attributed to a physical quantity in experimental way. 

Due to imperfection of instruments used in measurement process, measure-

ment methods, environmental impact and variability of environmental conditions, 

we can assign a certain interval, with a certain probability associated with the 

measurand. 

The objective of measurement in the uncertainty approach is not to determine a 

true value as closely as possible. Rather, it is assumed that the information from 

measurement only permits assignment of an interval of reasonable values to the 

measurand, based on the assumption that no mistakes have been made in per-

forming the measurement. Measurand is a quantity intended to be measured. The 

term “interval” is used together with the symbol [a; b] to denote the set of real 

numbers x for which a ≤ x≤ b, where a and b>a are real numbers. The term “in-

terval” is used here for “closed interval”. The symbols a and b denote the ‘end-

points’ of the interval [a; b]. 

A measurement result is complete only when accompanied by a quantitative 

statement of its uncertainty; it should be expressed by two numbers. One – the 

best estimate of the value of quantity under measurement, while the second should 

characterize the dispersion which specifies the interval covering the value of quan-

tity at a certain ”p” coverage probability (level of confidence). 

Correctly presented measurement result is as follows: (658,21,2)  p = 0,95. 

„658,2” is the best point estimator of the measured quantity, „1,2” denotes the 

limits of the interval of estimator dispersion (Fig.1) at coverage level (level of con-

fidence) of 0,95. 

The interval can be also expressed as percentage of point estimator: 

(658,2  1,9 %) p = 0,95 or just limits in brackets: [657,0;694,4]. 

 

Fig.1. Graphical presentation of measurement result and uncertainty range. A point estimator it can 

be just a simple instrument reading or a mean value of series of observations  
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Rounding off the measurement result 

 

Whenever a numerical value is quoted, the choice of number of digits is 

needed. Round-off the number by discarding some of the digits at its right-hand 

end is essential for measurement result presentation. 

The rules for rounding off point estimator are as follows: 

 If the first non-significant digit is less than 5, then the least significant digit 

remains unchanged 

 If the first non-significant digit is greater than 5, the least significant digit is 

incremented by 1 

 If the first non-significant digit is 5, the least significant digit can either be 

incremented or left unchanged 

o If there is any digit after 5 then the least significant digit is incre-

mented by 1 

o Otherwise, is incremented by 1 if the least significant digit is odd and 

not incremented if the least significant digit is even  

 

There are also rules for rounding-off uncertainty and general requirement is 

not to lower our confidence to the estimated interval, so round-up and keeping two 

significant digits is recommended.  

 

Example:  

Let’s consider the case: 

(62,831 8530,104 719 76) mm at p=0,95 

Firstly we round-off uncertainty  - the rule is to round-up leaving two signifi-

cant digits.  

So, if from calculation, a raw value before rounding off  is  U=0,104 719 76  

then after rounding up U = 0,11. 

The uncertainty is determined with a certain level confidence. Rounding up of un-

certainty is an effect of requirement of not lowering our confidence to measure-

ment result. 

Secondly we round off point estimator of the value of quantity:  

the rule is to keep the same number of significant digits as in uncertainty, so   

62,831 853 =2,83 

The measurement result is quoted as:   (62,830,11) mm at p=0,95 
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It is also permissible to keep one significant digit in uncertainty if the rounding up 

does not cause a rounding error to be bigger then 10% or rounded uncertainty. 

Several examples of rounding off 

Example 1  

Raw from calculations R= (107,5235  0,00921)  

After rounding-off R=(107,52  0,01)  

Rounding up of uncertainty is below 10% (8,6%), so only one significant digit in 

uncertainty is presented. 

Example 2  

Raw from calculations R=(107,5234  0,015126)  

After rounding-off R=(107,523   0,016)  

Rounding–up of uncertainty is over 10% (32%), so two significant digits are quoted 

in uncertainty.  

Example 3  

Raw from calculations R=(107,52350001  0,015126)  

After rounding-off R=(107,524  0,016)  

Example 4  

Raw from calculations R=(107,5225000  0,015126)  

After rounding-off R=(107,522  0,016)  

Example 5  

Raw from calculations R=(107,5235000  0,015126)  

After rounding-off R=(107,524  0,016)  

Example 6  

Raw from calculations R=(107,522501  0,01500011)  

After rounding-off R=(107,523  0,016)  

Example 7  

Raw from calculations R=(107,52251  0,015126)  

After rounding-off R=(107,523  0,016)  

Example 8  

Raw from calculations R = (376,35602    0,12501)  

After rounding-off R = (376,36   0,13)  

 

Further examples of measurement data statements: 

(127  13) m  p=0,95 

(23,2  0,1) oC   p=0,95 

(230,4  1,2) V  p=0,95 
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(3,33  0,12) s   p=0,95 

(50,46  0,25) Hz  p=0,95 

p=0,95 is the most commonly used level of confidence (coverage factor). 

 

Sources of errors and uncertainties: 

 incomplete definition of the measurand 

 imperfect realisation of definition of the measurand 

 non-representative sampling – the sample measured may not represent the 

defined measurand 

 personal bias in reading especially might appear if analogue instruments are 

used 

 imperfection of human sensing abilities to read instrument indication and fi-

nite resolution of instruments,  

 finite instrument resolution or discrimination threshold   

 inexact values of measurement standard and reference material 

 inexact value of constants and other parameters obtained from external 

sources and used in data-reduction algorithm 

 approximations and assumptions incorporated in the measurement method 

and procedure (imperfection of measurement methods) 

 incomplete knowledge about the impact of environment on the object of 

measurement and measuring instruments 

 variation in repeated observations of measurand under apparently identical 

conditions  

 imperfection of instruments used (data specification and certificate of in-

strument calibration help to evaluate uncertainty) 

 human errors in instrument reading which might be classified as gross er-

rors,  

 

The boundaries defining the range of uncertainty, which are usually taken as 

symmetrical with respect to the point estimator of mark with an uppercase "U", and 

the confidence level lowercase "p". 

General statement of measurement result: Uxx   is equivalent to 

UxUxx  ; . 
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An arithmetic mean of n observations of xi of a quantity X is serving usually as 

point estimator – the best approximation of value of the quantity. The arithmetic 

mean is expressed by formula:  

n

x

x

n

i
i

 1 .   

Measurement uncertainty (uncertainty of measurement, or uncertainty) is a 

non-negative parameter characterizing the dispersion of the quantity values being 

attributed to a measurand, based on the information used. (definition given by In-

ternational Vocabulary of Metrology — Basic and general concepts and associated 

terms, VIM 3rd edition, JCGM 200:2008) 

NOTE 1 Measurement uncertainty includes components arising from systematic 

effects, such as components associated with corrections and the assigned quantity 

values of measurement standards, as well as the definitional uncertainty. Some-

times estimated systematic effects are not corrected for but, instead, associated 

measurement uncertainty components are incorporated. 

NOTE 2 The parameter may be, for example, a standard deviation called stan-

dard measurement uncertainty (or a specified multiple of it), or the half-width of an 

interval, having a stated coverage probability. 

NOTE 3 Measurement uncertainty comprises, in general, many components. 

Some of these may be determined by Type A evaluation from the statistical distri-

bution of the quantity values from series of measurements, and can be character-

ized by standard deviations. The other components, which may be determined by 

Type B evaluation, can also be characterized by standard deviations, obtained from 

probability density functions, based on experience or other information.  

NOTE 4 In general, for a given set of information, it is understood that the 

measurement uncertainty is associated with a stated quantity value attributed to 

the measurand. A modification of this value results in a modification of the associ-

ated uncertainty. 

 

Uncertainty U is called the expanded measurement uncertainty, and the adjec-

tive "expanded" comes from a fairly popular method of its determination according 

to the formula  

,  
p cU k u
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where kp is a coverage factor, which is a number larger than one by which a com-

bined standard measurement uncertainty uc is multiplied to obtain an expanded 

measurement uncertainty. Coverage factor can be calculated for level of confidence 

“p”, called coverage probability.  

uc   is a combined standard measurement uncertainty that is obtained using the 

individual standard measurement uncertainties associated with the input quantities 

in a measurement model  

uc is a combined uncertainty as:  

 .
 

uA –  Type A evaluation - often called Type A standard uncertainty, and is calcu-

lated from series of repeated observations and is the familiar statistically estimated 

variance s2  

 
2

1
( 1)

( 1)

n

i

i
n n

x x

s s
n n






 



 

 
uB – Type B evaluation - often called a Type B standard uncertainty. 

Uncertainty calculated by Type A method and Type B method. 

Evaluation of type A uncertainty is based on series of observations. uA is an esti-

mated standard deviation, which is the positive square root of variance 

(Var=s2=uA
2) of observations thus uA = s and for convenience is sometimes called a 

Type A standard uncertainty.  

 

Type B standard uncertainty is the pool of information, which may include: pre-

vious measurement data;  experience with or general knowledge of the behaviour 

and properties of relevant materials and instruments;  manufacturer's specifica-

tions; data provided in calibration and other certificates; uncertainties assigned to 

reference data taken from handbooks. 

Uncertainties of type A  

Calculation of type A uncertainties requires a set of values coming from experi-

mental observations of the quantity. Measurements must be repeated in the same 

conditions. The observations, which are the readings from the measuring instru-

ment, carried out in the same environmental conditions, should differ in some way 

in values, and differences between them should have a random character. The ob-

2 2 2

c A Bu u u 
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servations should not carry any a’propri (known in advance) systematic influences - 

trends or correlation effect. A set of data  can be treated as random variable and 

statistical methods are applied to evaluate uncertainty of type A. 

If X is a set of observations: x1, x2, x3, … xn then the arithmetic mean of n indi-

vidual readings can be regarded a the best estimate of a quantity value under 

measurement. 

 
n

x

x

n

i
i

 1  - arithmetic mean of n observations (1)

 

 

The standard deviation sn-1 of a measurement sample is a subset of the popula-

tion containing all possible values of observation. For continuous random variable 

infinitely large number is possible, but it would require infinitely long period to 

carry out the observations. 

The deviation of the single observation in the sample is expressed by: 

 

1

2

1
1











n

xx

s

n

i
i

n  where x - is an arithmetic mean of n observations (2)

 

Standard uncertainty uA equals to standard deviation of mean from n- observa-

tions and is express by formula: 

 
   

 

2
2

1 1
( 1)

1

1 1

n n

i i

n i i
A n n

x x x x
s

u s
n n nn n

 


 

   
 

 
 (3)

 

When infinitely large number of influences which affect individual observations, 

and encountered during the measurement process, and the number of observations 

is equally large, the dispersion of results corresponds to Gauss distribution. Other-

wise the t-Student distribution should be applied. 

In practice in many applications the t-Student distribution is applied when the 

number of observations n<30. 

Type A standard uncertainty is equal to the standard deviation of average of n ob-

servations )1(  nnA su  

For Gauss distribution, the coverage factor, kp for a coverage probability  

is: kp =1,96.
 

Cumulative distribution of Gauss probability density function is given by (4),  

0,95p 
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   dxexP
x

x




















2

2

2

2

1 


 (4)

 

Where:   is a standard deviation 

 

Probability density function of (4) is given by (5): 

  
















2

2

2

2

1 



x

exp  (5)
 

Graphically it is presented in Fig. 2a and Fig. 2b. 

 

a) 

 

b) 

 

Fig. 2. Standardized Gaussian distribution N(0,1) it means Gauss for x =0 and =1: (a) 

probability density function p(x), (b)cumulative probability density function, P(x). 

Probability density function (PDF) for normalized Gauss PDF is called Normal distri-

bution and is denote as capital „N” with parameters in brackets N(0,1): where 

mean value x =0,  standard deviation =1. 

For N(0,1) coverage factors kp for a several levels of confidence p are in Tab. 1.  

Tab. 1. Coverage factors kp for a several levels of confidence p. 

p 0,5 0,683 0,95 0,99 0,997 0,999 

kp 0,676 1 1,96 2,58 2,97 3,29 

As Gaussian distribution is used for n >30, than in tab. 1a. kp,(n-1)=k0,95;  for 

coverage probability of p=0,95 (most common used) for a chosen number of de-

grees of freedom, , which equals  =n-1 where n – number of observations are 

given in tab. 1a 
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Tab. 2. Coverage factors kp, for t-Student distribution ( =n-1 where  

n – number of observations). 

  90.0p  95.0p  99.0p  999.0p  

1 6.31 12.71 63.66 636.62 

2 2.92 4.30 9.93 31.60 

3 2.35 3.18 5.84 12.92 

4 2.13 2.78 4.60 8.61 

5 2.02 2.57 4.03 6.87 

6 1.94 2.45 3.71 5.96 

7 1.89 2.37 3.50 5.41 

8 1.86 2.31 3.36 5.04 

9 1.83 2.26 3.25 4.78 

10 1.81 2.23 3.17 4.59 

11 1.80 2.20 3.11 4.44 

12 1.78 2.18 3.06 4.32 

13 1.77 2.16 3.01 4.22 

14 1.76 2.14 2.98 4.14 

15 1.75 2.13 2.95 4.07 

16 1.75 2.12 2.92 4.02 

17 1.74 2.11 2.90 3.97 

18 1.73 2.10 2.88 3.92 

19 1.73 2.09 2.86 3.88 

20 1.72 2.09 2.85 3.85 

21 1.72 2.08 2.83 3.82 

22 1.72 2.07 2.82 3.79 

23 1.71 2.07 2.82 3.77 

24 1.71 2.06 2.80 3.75 

25 1.71 2.06 2.79 3.73 

26 1.71 2.06 2.78 3.71 

27 1.70 2.05 2.77 3.69 

28 1.70 2.05 2.76 3.67 

29 1.70 2.05 2.76 3.66 

30 1.70 2.04 2.75 3.65 

40 1.68 2.02 2.70 3.55 

60 1.67 2.00 2.66 3.46 

120 1.66 1.98 2.62 3.37 

  1.65 1.96 2.58 3.29 

  - is a degree of freedom and is equal to number of observations minus 1 

=n-1 
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Comparison of PDFs of Gauss N (0,1) distribution and t-Student distributions  

 

Fig. 3. Probability density function for: t-Student distribution for sn(n-1)=1 for 

n=3 ( =2) and n=9 ( =8) observations and Normal distribution N(0,1). 

 

p =0,95

=-1,96 =1,96

 

P=0,975

P=0,025

=-1,96 =1,96

 

Fig 3a. Probability density function of continuous random variable Func-

tion of Normal distribution N(0,1) a) probability density function, f(z) b) 

cumulative probability density function F(z) 

Uncertainties of type B   

 

The type B method of uncertainty evaluation, requires the information of the 

measurement errors coming from other sources than a series of observations. 

Sources of such information can be obtained from: 

 previous measurement data;   

 experience with or general knowledge of the behaviour and properties 

of relevant materials and instruments;   
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 manufacturer's specifications;  

 data provided in calibration and other certificates;   

 uncertainties assigned to reference data taken from handbooks. 

There are at least one or two parameters specified in instrument technical data 

sheet supplied together with every instrument , which allows to calculate maximum 

permissible measurement error, also called limit of error. Basing on these parame-

ters it is possible to calculate limits of errors for each instrument reading. These 

limits, also called maximum permissible errors, usually are symmetrically located 

around the indicated value by instrument.  

The maximum permissible measurement error is expressed by following for-

mula: 

max

1 1

100 100
P m rdg a FSRx x   

 

where:  

, is a multiplicative component (expressed in  %) 

 - is a additive component (expressed in  %) 

rdgx  - is a  instrument reading  (value indicated by instrument) in measuring 

unit 

FSRx  - is a full scale range (in measuring units) 

max P  - is a maximum permissible measurement error expressed in measuring unit  

The maximum permissible error allows to determine borders of the interval, 

which covers the measured value. The borders are located symmetrically around 

the value indicated by the instrument therefore the interval is: 

maxP maxP;rdg rdgx x   . The question is: “what is the probability that the interval 

covers the measured value?”. According to instrument technical specification no 

outside of specified coverage interval is expected, so coverage probability equals to 

1 (p=1). The errors inside coverage interval are uniformly distributed as given in 

Fig. 4a. The relation presented in Fig 4a is called probability density function and 

the function in Fig. 4b which is an integral of relation from Fig 4a is called a cumu-

lative probability density function or distribution function.  

If probability density function is a straight horizontal line over interval 

maxP maxP;rdg rdgx x   , the cumulative probability density function is a skew line 

m

a
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starting at low boundary of coverage interval with P(x)=0 ending at higher bound-

ary of coverage interval at P(x)=1. 

 

Fig. 4.  a) probability density function p(x) of uniform distribution b) cumulative 

distribution function P(x)of uniform distribution 

Standard deviation  is a square root of variance . Definition of variance is  ex-

pressed as follows:  

  
2

2v p x x x dx




   , so v u   .  

Using the above according to the Fig. 4.a: p(x)=1/(2)  the standard uncer-

tainty of type B, uB, of uniformly distributed p(x) is calculated as follows:  

   maxPmaxP

maxP maxP

3 33 2
max P max P2 2 2

max P max P

1 1 1

2 2 3 2 3 3

rdgrdg

rdg rdg

xx

B

grx x

x
u x dx



 

   
    

    or 

 
2 max P

3
B Bu u


 

 (6)

 

Combined standard uncertainty 

Combined standard uncertainty is calculated as geometrical sum of two compo-

nents (7): 

 
2 2

c A Bu u u 
 (7)

 

If both components uA and uB in (7) are coming from two different not Gaussian 

type distributions, the uc. belongs to third type of distribution. If uA and uB  are two 

Gaussian distributions with different values of standard deviation, then uc also is a 

Gaussian type distribution. 
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In left column are different probability density functions. In right columns are 

probability distribution functions referred to combined probability distribution func-

tion components of which are A and B (in black and in red cumulative probability 

function of combined PDF. 

  
Uniform PDF of uB is black; Gauss PDF 

(uA) is red; ratio: uA/uB =1/1  

kp=0,95=1,92 for p=0,95 

2 2

0,95 0,95 0,95p p c p A BU k u k u u       

 

  
Uniform PDF of uB is black; Gauss PDF 

(uA) is red; ratio: uA/uB =1/2 

kp=0,95=1,96 for p=0,95 

2 2

0,95 0,95 0,95p p c p A BU k u k u u       

  
Uniform PDF of uB is black; Gauss PDF 

(uA) is red; ratio: uA/uB =1/5  

kp=1,69 for p=0,95 

2 2

0,95 0,95 0,95p p c p A BU k u k u u       
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uA1/(uA2)=1/2 both distributions are 

Gaussian type 

kp=1,96 for p=0,95 

2 2

0,95 0,95 0,95 1 2p p c p A AU k u k u u       

  
uB1/uB2=1/1 (but both distributions 

are uniform over interval <-1;1> 

kp=1,90 for p=0,95 

2 2

0,95 0,95 0,95 1 2p p c p B BU k u k u u       

  
uB1/uB2=1/2 (but both distributions 

are uniform over interval <-1;1> 

kp=0,95=1,84 for p=0,95  

2 2

0,95 0,95 0,95 1 2p p c p B BU k u k u u       

The coverage interval in most measurements is evaluated for the coverage 

probability 0,95. It means our confidence is 95 % that measured quantity value is 

covered by the interval. 

 

Standard measurement deviation of indirect measurements 

 

Indirect measurements are the measurements in which is determined both from 

measurement values and mathematical operations. 

For example: R=V/I is an indirect measurement of R when V and I are read. 
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Indirect measurements like:  R=V/I, to calculate standard deviation it is neces-

sary to use the following relation for composite function.  

Consider the general relation, that y=f(x1, x2, x3, x4 …xn ) 

That standard deviation for not correlated quantities X1, X2, X3, X4 …Xn  is given by 

 

1 2

3

2 2

2 2 21 2 3 1 2 3

1 2

2 2

2 21 2 3 1 2 3

3

( , , ,... ) ( , , ,... )
( )

( , , ,... ) ( , , ,... )
.....

n

n n
x x

n n
x x

n

f x x x x f x x x x
u y u u

x x

f x x x x f x x x x
u u

x x

    
     

    

    
   

    

 (8) 

or in the form: 

 

 
1 1 2 2 3 3

2 2 2 2 2 2 2 2 2( ) ...
n nx x x x x x x xu y c u c u c u c u       (9) 

Where 

 

;

 

1 2 3( , , ,... )
i

n
x

i

f x x x x
c

x





 - called sensitivity coefficients 

Practical remark: If distribution is not far removed from Gaussian shape a kp=2 

for p=0,95 can be used, thus U=2uc. 

 

As an example let us calculate uncertainty for measurement of resistance applying 

indirect method:  

 
I

V
R     

Resistance depends on two input quantities: V and I, thus R=f(V,I), so if only sin-

gle readings (not a series of observations) are available from instruments, and if V 

and I are not correlated, only uB: can be calculated from: 

  
   

2 2

2 2 2
)

Bc BV BI

f R f R
u R u u

V I

     
    

    
   (10) 

Or with sensitivity coefficients: 

      
2 22 2 2

Bc V BV I BIu R c u c u    (11) 

cV and cI coefficients can be calculated from (12) 

 
   

22

11

I

V

I
V

I

Rf
c

IV

Rf
c IV





















  (12) 

Inserting (12) to (11) we obtain (13):  

   2

2

2

2
2

2 1
BIBvBc u

I

V
u

I
Ru 







 









  (13) 
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It is more convenient for further calculations of (13) if left and right sides of 

(13) are divided by R=V/I (14). „rel”  refers to relative value. 

 
 

2

2
2

2

2

2
2

2

2
2

1

R

u
I

V

R

u
I

R

Ru
Ru

BIBv
Bc

relBc








 












 and next  

         
  22

2

2

2

2

2

2
2

2

2

2
2

2

2
2

1

BIrelrelBV
BIBv

BIBv
Bc

relBc uu
I

u

V

u

I

V

u
I

V

I

V

u
I

R

Ru
Ru 

















 





















  (14) 

So (14) can be presented as: 

   2 2

Bcrel BV rel BIrelu R u u     (15) 

And:  

 max max

3 3

P P
BV rel BIrel

rdg rdg

V I
u u

V I

 
 

 
 (16) 

And finally B type standard measurement uncertainty in ohms: 

 Ruu relBcBc   (17) 

Coverage factor kp depends on combined distributions of components. Both are 

uniformly distributed and the combination is a trapeze shape. 

 

Tab. 3 Coverage factors, kp=0,95, for two uniform distributions several ratios of 

uB1/uB2.for coverage probability of p=0,95  

uB1/uB2 0:1 0,1:1 0,2:1 0,3:1 0,4:1 0,5:1 0,6:1 0,7:1 0,8:1 0,9:1  

kp=0,95 1,645 1,652 1,698 1,751 1,796 1,834 1,862 1,881 1,894 1,900 

 

uB1/uB2 1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:10 

kp=0,95 1,902 1,834 1,767 1,724 1,698 1,662 1,670 1,662 1,656 1,652 

 

For a uniform distribution (sometimes called rectangular distribution) the bor-

ders of coverage interval: <xrdg-Up; xrdg+Up> for p coverage probability, Up is ex-

pressed: Up =kpuc where 3pk p  for p<0;1> 

For ex ample: 395,095,0 k  

In the case of two uniform distributions of which combined standard uncertainty 

2 2

1 2cB B Bu u u   or 2 2

1 2cBrel B rel B relu u u 
 the kp factors are given in Tab. 3.  

For combined uncertainty (relative of absolute values) of which components are 

as in (19) 
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 22
BAc uuu   (18) 

Expanded uncertainty U at level for coverage probability p depends on standard 

uncertainty u (for combined u = uc) and coverage factor k (kp)  

 p p cU k u  (19) 

kp  depends on combined distributions of uc  of components of type A and B. 

  

If type A distribution (Gaussian or t-Student) are dominant then the coefficients 

from Tab 1 or Tab 2, can be used. 

If uniform distribution is dominant then 3pkp  . 

If B type distribution is composed of two uniform distributions which are domi-

nating over type A, then kp=0,95 are given in tab. 3. Otherwise the approximate 

value for p=0,95 can be applied:  kp=0,95=2. 
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EXPERIMENT: 

The measurement of an unknown value of resistor applying indirect and direct 

measurement methods, and estimation of uncertainties according to international 

guide: GUM - Guide to the expression of uncertainty in measurement (GUM) JCGM 

OIML” 1993, is a goal of experimental tasks 

 

TASK  1: 

Direct method measurement- two wire method 

Resistance is to be measured by 4 instruments, of which maximum permissible 

errors  max P R
 are given by individual formulas as follows: 

1) PROTRK type 3030S – analogue multimeter:  max
3% rdgP R

R     

2) METEX type M3270D     max
0,8% 2rdg nP R

R c     

3) APPA type 109N –    max
0,3% 3rdg nP R

R c      

4) Rigol DM 3051 ( 4
35  digit) –     max

0,015% 0,006%rdg nP R
R R     apply range 

Rn=4,00000 k 

rdgx  - instruments reading;  

nx  - nominal range of instrument;  

nc  - least significant digit of instrument 

 

Tab.  Measured values. 

TYPE 
of  

instrument 

Instrument 
reading 

Max. per-
missible 

instrument 
error 

Instrument 
standard 

uncertainty 

Relative in-
strument stan-
dard uncer-
tainty 

Expanded uncer-
tainty at level of 
confidence 
p=0,95 

Measurement result 
for  p=0,95 

URR rdg   

rdgR
  max P R

  
 max

3

P R

Bu




 
rdg

B
relB

R

u
u   

BuU 395,0  

       %     

PROTEK HC-
3030S 

      

METEX  
M-3270D 

      

APPA 
109N 

      

Rigol 
DM3051 
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TASK 2 

 

Indirect method measurement- four wire method 

Measure resistance of the same resistor as in task 1, but applying indirect 

measurement method, using the same instruments as in Task 1, but using voltme-

ter and ammeter ranges of combining instruments in pairs as follows: 

(i) RIGOL (as voltmeter) and APPA (as ammeter) 

(ii) RIGOL (as voltmeter) and Protek (as ammeter) 

(iii) METEX (as voltmeter) and APPA (as ammeter) 

(iv) METEX  (as voltmeter) and Protek (as ammeter) 

 

Apply wiring as in Fig. 5 

 

 

Fir. 5. Wiring for indirect resistance, Rx, measurement method Rx – resistor un-

der test; IRX – current passing through Rx, VRx voltage across  Rx, A- ammeter, V- 

voltmeter, Vzaś=5V voltage of power supply Izaś current of power supply, Vwolt –

 voltage across voltmeter Rwolt – internal resistance of voltmeter; Iwolt – current 

through voltmeter  

 

APPA and PROTEK multimetrs serving as ammeters  

RIGOL i METEX multimetrs serving as voltmeters.  
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Tab. 2. RIGOL RVRIGOL = 10 M METEX RVMETEX = 10 M 

Voltmeters 

VV  

Voltage 
relVu  Amme

me-

ters 

I
A relIu  relRu  

relRxU  RxU  

V  % mA % % %  

RIGOL   APPA      

RIGOL   Protek      

METEX   APPA      

METEX   Protek      

 

Instrument’s data referring to measurement instrument accuracy for selected ranges 

Instrument type 
Measure-

ment range 

max P - maximum per-

missible instrument 

error 

Borders of maximum, permissible instru-

ment errors for voltage and current selected 

ranges of multimeters
 

RIGOL 3051 40 V  maxP m rdg a nx x    
    maxP V

0,0025% 0,006%rdg nx x   
 

METEX M-327D 40 V  maxP m rdg ca nx l c        maxP V
0,8% 2rdg nx c     

APPA 109 20 mA  maxP m rdg ca nx l c        maxP I
0,20% 40rdg nx c     

Protek  3030S 

 
30 mA  max P a nx     max P I

3% nx    

 

Tab. 2a table of calculated resistances and uncertinties: 

Instruments I

V
R 

 22

relBIrelBV
uu

u relBR





 Ru

u

relBR

BRx 
 B Rx BRxU ku  

Measurement 

statement 

x B RxR U
 

 %    

RIGOL + APPA      

RIGOL + Protek      

METEX + APPA      

METEX + Protek      

 

- instrument reading;  - instrument range/ sub-range  
rdgx nx
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 - number of least significant digits;  - the least significant unit instrument 

sub- range m - multiplicative  component of instrument maximum permissible er-

ror; a - additive component of instrument maximum permissible error 

 

lim1

3

voltmeter

V rel

rdg voltmeter

u
U


 

               

lim1

3

ammetr

I rel

rdg ammetr

u
I


   

relRxrelRx ukU 
                            

22

relIrelVrelRx uuu 
 

xrelRxRx RUU 
 

Note: For rectangular error distribution at level of confidence p=0,95 coverage 

factor k=0,95 √3. If one of rectangular distributions is dominating k=0,95 √3 can 

by applied otherwise k=2 

 

Consider the influence of power consumption by voltmeter circuitry and com-

pare to current through resistor under test. 

 

Current through voltmeter can be calculated from formula:  

V
V

V

U
I

R
    

Current leakage through voltmeter effect as indirect method measurement er-

ror, have a systematic nature, its value is known and measurement result can be 

corrected by that value. 

 

Task 3 

 

Direct method measurement- four wire method 

 

Measurement wiring of RIGOL DM3051 is presented in Fig. 6. Record 100 ob-

servations in time intervals of 1 s; apply ULTRALOGGER data acquisition Rigol soft-

ware to collect and record data in PC computer connected to instrument via USB 

interface. 

 

nl nc
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Fig 6. Four terminal direct resistance measurement method. 

 

For data handling use and EXCEL package. Fit to Excel recoded txt of 100 observa-

tions (data) collected from RIGOL. 

1. Draw “raw data” (observations) as a function of time,  ii tfR  ; ti time of 

each collected observation (Fig. 7) 

2. Check if any trends are observed (rys. 7) 

a. If any trend resent, remove the trend as it is a systematic effect, like 

a too short time of instrument heating after switching to power sup-

ply. Go to point 3  

b. If no trend is observed go to point 3 

 

 

Fig 7. Raw data in time, identified trend and data without trend – cor-

rected data  

3. Calculation of mean value of corrected data: 
n

R

R

n

i
i

 1 :  

386,525 

386,53 

386,535 

386,54 

386,545 

386,55 

386,555 

386,56 

0 20 40 60 80 100 o
b

s
e
r
v
e
d

 v
a
lu

e
s
 i

n
 t

im
e
; 



time of observations in s 

raw data trend line data without trend 
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4. Apparent errors as a difference between each observed value and mean, 

from point 3: 
 xii RRΔ   

5. Graph of apparent errors as a function in time )( ii tfΔ   

 

Fig 7a. Apparent errors in time 

 

6. Standard deviation of apparent errors: 

 
2

1

( 1)
1

n

i

i

ns
n











 

7. Check if in a set of apparent errors, nii ....3,2,1for 
 
are any gross errors? 

Gross error might be recognized as errors which do not confirm relation: 

nis ni ....3,2,1for3 )1(    

a. If any gross error is identified, eliminate from the raw observation 

these values from the set, and start the procedure from point 1 

b. Otherwise go to point 8. 

8.  Calculation of frequency of occurrences of apparent errors around mean 

value applying 11 intervals covering the whole range of apparent errors. Use 

Histogram function from Excel. Histogram present in graphical form   (Fig. 

8) 
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Fig 8. Numbers of occurrences of apparent errors in intervals 

 

9.  Based on histogram draw a frequency of occurrences of apparent errors in 

intervals, in relation to all observations. (division by 100 if no gross errors 

observed), (rys.9). 

 

Fig. 9. Frequency of occurrences of apparent errors.  

 

10. Convert borders of intervals (x axis) expressed in  to relative values 

against standard deviation  si, and vertical axis (y) as multipliers of fre-

quency of error accuracies by width of each intervals (rys.10). 
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Fig. 10. Probability density relation vs. relative borders of occurrences   

 

11.  Such Probability density relation compare to the shape of probability den-

sity function of Normal distribution (rys.11).  

For comparison of experimental probability density function to Normal, the 

normalisation of area under experimental to the same are under normal dis-

tribution are required. Both areas should be equal to 1. 

 

Fig. 10. Probability density of experimentally apparent errors (in blue) and 

probability density function of Normal distribution (in red). 

 

12. Standard deviation of mean is a better estimation then standard uncertainty 

of individual observations. Std   
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 

 

2

1

( 1)
1

n

i

i

n ns
n n











 

13. Calculation of uncertainty of type B  from data specified by instrument pro-

ducer:    nxnrdgRgrRxB RRRRu %002,0%15,0
3

1
%002,0%15,0

3

1

3

1
   

14. Expanded uncertainty for coverage probability of 95 %, for p=0,95 

a. if uB>>uA  ; that  BRxpRxBRx uUU 395,095,0   U 

b. if  uB<<uA ; that: )1(95,0 96,196,1   nnApRxARx suUU  

c. otherwise: 

  22

xxx BRARR uuu    

and in such  case: 2222
xxxx BRARRR uuuU    for p=0,95   
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FINAL REMARKS: 

ver. 6 
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